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The perceived color of an object depends on its spectral
reflectance and the spectral composition of the illuminant.
Thus when the illumination changes, the light reflected
from the object also varies. This would result in a different
color sensation if no color constancy mechanism is put in
place—that is, the ability to form consistent representation
of colors across various illuminants and background scenes.
We explore the quantitative benefits of various color
constancy algorithms in an agent-based model of foraging
bees, where agents select flower color based on reward.
Each simulation is based on 100 ‘‘meadows’’ with five
randomly selected flower species with empirically
determined spectral reflectance properties, and each
flower species is associated with realistic distributions of
nectar rewards. Simulated foraging bees memorize the
colors of flowers that they have experienced as most
rewarding, and their task is to discriminate against other
flower colors with lower rewards, even in the face of
changing illumination conditions. We compared the
performance of von Kries, White Patch, and Gray World
constancy models with (hypothetical) bees with perfect
color constancy, and color-blind bees. A bee equipped with
trichromatic color vision but no color constancy performed
only ;20% better than a color-blind bee (relative to a
maximum improvement at 100% for perfect color
constancy), whereas the most powerful recovery of
reflectance in the face of changing illumination was
generated by a combination of von Kries photoreceptor
adaptation and a White Patch calibration (;30%
improvement relative to a bee without color constancy).
However, none of the tested algorithms generated perfect
color constancy.

Introduction

Colors are used by many animals, including
humans, to identify salient objects under considerable
variation in natural illumination. If the spectral
composition of the illumination changes, then so
does the light reflected from objects. For example the
impression of redness can be generated by a red
object under white light, or a white object under red
light. This makes object identification by color
challenging, unless the viewing system possesses color
constancy, the ability of the visual system to
compensate for illumination changes. But how does
color constancy work, and which mechanisms work
best for realistic and natural ranges of illumination
changes?

Pollinating bees are a powerful model for studying
the adaptive significance of color vision as they exist
in a mutual relationship with flowering plants that
signal reward by color (Chittka & Menzel, 1992;
Menzel & Backhaus, 1991). Generalist flower visitors
such as honeybees use their color vision to detect
flowers, to memorize the colors and patterns of
rewarding flowers, and to discriminate against less
rewarding flowers. This paradigm rules the life of the
forager bee, and accuracy of color choice is crucial
for foraging success and therefore biological fitness.
Because of this prime importance of color choices in
a bee’s life, these insects provide a unique system to
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explore questions of the function and benefits of
color constancy.

Like humans, most species of bees are trichromatic.
Honeybees (Apis mellifera) are typical in terms of their
photoreceptor equipment across the diversity found in
bee pollinators, and are thus used as a model system
here. A crucial difference between human and honey-
bee color vision is that the latter possess an ultraviolet
(UV) receptor with a peak sensitivity (kmax) at 344 nm,
in addition to blue (kmax¼ 436 nm), and green (kmax¼
544 nm) receptors (Peitsch et al., 1992). Honeybees and
most other species of bees have no red receptors
(Figure 1).

Numerous studies on color vision in bees have
shown that color choice is, to some degree, independent
of the spectral content of the illuminant (Dyer &
Chittka, 2004; Lotto & Chittka, 2005; Mazokhin-
Porshnjakov, 1966; Neumeyer, 1980, 1981a; Werner,
Menzel, & Wehrhahn, 1988), although the compensa-
tion of the light change is not complete and color
constancy, therefore, is imperfect. Thus, bees do not
‘‘discount’’ the illuminant, and indeed the spectral
quality of natural illumination holds important infor-
mation about, for example, weather conditions and
time of day. Therefore, animals face the challenge of
remaining color constant and yet to also be able to
perceive changes to the light (Lotto & Chittka, 2005;
Skorupski & Chittka, 2011). While some authors have
held that color constancy needs to be essentially perfect
for color vision to be at all useful (Land, 1977), the
penalties for departures from perfect color constancy
paid under natural conditions need to be quantified on
a case-by-case basis, depending on the actual variation
of the illumination, and colors that need to be
distinguished. The fundamental question we ask here is

how effective various computational color constancy
algorithms are under biologically relevant, natural
conditions.

Several models of computational color constancy
have been proposed, with various assumptions about
the integration of properties of the illuminant and
the scene surfaces (Brainard & Wandell, 1986;
Brainard et al., 2006; Fairchild & Reniff, 1995;
Hurlbert, 1998; Land, 1983, 1986; Maloney &
Wandell, 1986; Werner, Sharpe, & Zrenner, 2000)
and with different methods of assessing performance
(Hansen, Olkkonen, Walter, & Gegenfurtner, 2006;
Ling & Hurlbert, 2008). Empirical studies have
quantified performance of color constancy methods
under various conditions (Brainard, Kraft, & Long-
re, 2003; Kraft & Brainard, 1999; Ling & Hurlbert,
2008). What is missing is a framework by which the
efficiency of various color constancy algorithms can
be tested under biologically relevant conditions.

Here we explore quantitatively the extent to which
(a) a visual model with color constancy outperforms
a color visual model with no color constancy in
foraging success; and (b) the evaluation of the
biological usefulness of various computational color
constancy algorithms for foraging under conditions
of changing illumination. The efficiency of various
color constancy mechanisms is assessed using multi-
agent based simulations of bees foraging under
highly realistic conditions, using natural illuminants
and flower spectral reflectance functions, as well as
floral rewards directly drawn from empirical data.

We begin with exploring the efficiency of a von
Kries adaptation mechanism, where color constancy
is only mediated by photoreceptor adaptation, so
that the relative sensitivity of a receptor will increase
when it is poorly stimulated, and decrease when light
in its spectral domain is strong (Dyer, 1998; von
Kries, 1905). However, there is considerable evidence
that more central nervous processes (i.e., beyond
adaptation in the retina) are also involved in color
constancy, and these are explored in the retinex
theory developed by Edwin Land (Land, 1959a,
1959b, 1959c, 1977; Land & McCann, 1971). Retinex
here combines elements of retina and cortex, high-
lighting the importance of both peripheral as well as
cortical mechanisms in human color constancy.
While bees of course do not have a cortex, there is
nonetheless evidence that more central nervous
processing might also be involved in maintaining
color constancy in bees (Lotto & Wicklein, 2005;
Werner et al., 1988) as well as fish (Ingle, 1985).
Whilst numerous variants of the retinex theory have
been developed (see Ebner, 2007, and Hurlbert,
1998), the focus of the paper is to quantify the
biological usefulness of color constancy mechanisms.
Two classical retinex algorithms in computational

Figure 1. Spectral sensitivity functions of the UV, B, and G

photoreceptors in the honeybee (Apis mellifera) eye, as

determined by intracellular recordings (Peitsch et al., 1992). The

functions are here normalized to a maximum of unity; in reality,

absolute sensitivity can differ between receptor types by more

than an order of magnitude, as a result of photoreceptor

adaptation. Adapted from figure 6A in Peitsch et al. (1992) with

permission from Springer/Rightslink.
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theory of color constancy (Buchsbaum, 1980; Land,
1959a, 1959b) are applied to the scenes in our
experiments. These are (a) the Gray world assump-
tion, which is the assumption that the average color
components of the scene in Red, Green, and Blue
([RGB]; or UV, Blue, and Green [UBG] in the bee)
average to gray; and (b) the White patch calibration,
which uses of the most intense region of the scene as
a reference point and assumes that this point must be
white.

Methods

Modeling the foraging environment

To test adaptive hypotheses in foraging, it is useful
to employ Agent-Based Modeling, where the inter-
actions of an autonomous agent (here: a bee forager),
using defined memory and decision heuristics, with a
spatially explicitly modeled environment can be
formalized (Dornhaus, Klügl, Oechslein, Puppe, &
Chittka, 2006). To model the foraging environment
and bee agents, we used NetLogo (Wilensky, 1999),
which is a simple programmable Agent-Based Mod-
eling system for simulating natural and social
phenomena, especially for modeling the interaction
developing over time between the agents and the
changes in the environment, such as variation in the
illuminant.

The meadow in which the modeled bees forage is a
350 · 350 celled map. Each cell contains either a
flower or green foliage. Five thousand flowers
consisting of five randomly selected flower species
(i.e., 1,000 flowers per species) are distributed
randomly within the map. The flowers are assigned
their empirically determined reflectance spectra as
downloaded from the Floral Reflectance Database
(FReD; Arnold, Faruq, Savolainen, McOwan, &
Chittka, 2010). Cells not occupied by flowers are
assumed to have an average of green foliage
reflectance spectra (Chittka, Shmida, Troje, &
Menzel, 1994). The hive (and the single bee agent at
the start of a foraging bout) are placed in the center
of the map.

Performance by bees (depending on the quality of
the color constancy algorithm; see below) is quanti-
fied as the amount of nectar collected by the bee
agent in the agent-based simulations under changes
of illumination. Nectar standing crop distributions of
natural flowers are assigned to each of the five
randomly occurring flower species in each foraging
environment. These values are based on empirically
determined nectar standing crop distributions found
in real plants (Raine & Chittka, 2007a, 2007b).

Implementation of foraging rules and color
choice

The agent-based model captures the interplay of the
color visual system of the foraging bee to make choice
between the flower colors in the environment using
simple rules of matching and maximizing (Chittka,
Gumbert, & Kunze, 1997; Greggers & Menzel, 1993)
and rules based on empirically determined foraging
behavior (Chittka, Spaethe, Schmidt, & Hickelsberger,
2001).

Figure 2 illustrates the rules of color choice in the
model by showing the states that the modeled bee can
assume. The rules for bees’ tendency for flower
constancy, i.e., to continue visiting a recently visited
flower species versus to switch species (Chittka &
Thomson, 1997) are implemented into the simulation
for the bee agent to determine when it should forage on
a flower, for example in the choice state the decision to
forage on a flower is based on:

� If the recent collection average is 0.4 to 1 ll, the bee
matches its choices against other rewarding flower
colors in this range (matching).
� If a particular colored flower exceeds 1 ll in one visit,
the bee exclusively visits this flower species if available
(maximizing; Greggers & Menzel, 1993).

The recent nectar collection average is a running
average of nectar collected from three flowers visited
before.

The search and move state as shown in Figure 2 for
the agent-based model are determined as follows:

1. Step 1: If target is in location within the bee’s visual
field, here defined as a 14 · 14 cell array surrounding
the agent, move straight to target.

2. Step 2: If no target is found within the visual field,
choose a direction at random and move in distance
d, then look for any target in this new location. If
none is found, choose another random direction and
move distance d. Repeat this step until target is
found, then move to Step 1 (Viswanathan, Raposo,
& da Luz, 2008).

This foraging rule is essentially a ‘‘random walk’’
spatial movement strategy (Heinrich, 1979; Pyke,
1981; Zimmerman, 1981). In our model, the bee can
perform any of four behaviors (searching for any
flower, moving from one point to another, foraging on
a flower by taking its available nectar content, or
deciding on a flower to forage on; this includes
recalling a known flower color from memory; Figure
2). The bee can switch between species, which can
happen in one of the following circumstances: (a) the
flower species are similar in color (in which case the
switch probability will depend upon the similarity
between the two species (see section: ‘‘Calculation of
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color loci in color space: color discrimination’’ below);
(b) a flower of the previously visited species is not
available in the immediate vicinity after extensive
search; or (c) if the nectar levels of the currently visited
species fall below the running average of nectar
collected for that species (Chittka et al., 1997).

In order to quantify exactly how performance is
affected by a change in lighting, the bee agent forages
under the canonical light (set as normal daylight D65;
see below) for a set period of time, that is, 50 flower
visits to any of the flowers in the meadow. After 50
visits to any of the five floral species in the meadow,
the light condition is changed from daylight D65 to
one of the following, naturally occurring illumination
conditions—forest shade, woodland shade, and light
filtering through small canopy gaps (small gap
illuminant; Endler, 1993). The ability to store new
experiences in the new light condition is blocked after
the switch from the canonical light occurs (after all 50
flower visits), and the flowers encountered under the
canonical light are retained. This forces the bee to
make decisions on choosing floral color based on what
is learned under the canonical light.

The amount of nectarM collected by the bee agent is
determined at the end of each simulation run. One
hundred simulation runs are performed for each
computational color constancy method. Each simula-
tion run creates one new bee agent, and each time
generates a new 350 · 350 map to distribute a new set

of five randomly selected flower species (occurring
1,000 times each).

Calculation of photoreceptor signals: von Kries
receptor adaptation

The signal generated by a photoreceptor when
viewing a particular colored object depends princi-
pally on the receptor’s spectral sensitivity function
and adaptation state, the illuminating light, and the
viewed object’s spectral reflectance. The relative
quantum flux P in a given photoreceptor type is
calculated as follows (Laughlin, 1981; Naka &
Rushton, 1966):

P ¼ R

Z 700

300

IsðkÞSðkÞDðkÞdk ð1Þ

where Is(k) is the spectral reflectance of the stimulus
(Arnold et al., 2010). D(k) is the illuminant (Figure 3,
for example, the D65 daylight function); S(k) is the
spectral sensitivity of the photoreceptor type in
question and dk is the wavelength step (i.e., 1 nm).
We used the spectral sensitivity functions of the
honeybee Apis mellifera (Peitsch et al., 1992; Figure
1). The sensitivity of the photoreceptors is adjusted
by a sensitivity factor (R) as follows:

R ¼ 1Z 700

300

IbðkÞSðkÞDðkÞdk
ð2Þ

The adaptation process by the coefficient R scales
sensitivity whilst adapting to light reflected from the
background (Laughlin, 1981) and adjusts the sensi-
tivity of the receptor so that it displays half the
maximal response when viewing the background
(with reflectance Ib(k)).

This is in line with the von Kries (1905) adaptation
theory, which is based on the assumption that the
sensitivity of a photoreceptor is scaled depending on
the overall intensity of the light in the receptor’s
spectral domain. This self-shunting of receptors
ensures that receptors can meaningfully code infor-
mation over intensity ranges of several logarithmic
units. Different spectral receptors can adjust their
sensitivity independently of each other to some
extent. Thus, such receptor adaptation can be
considered one of several possible mechanisms in
achieving color constancy: von Kries receptor adap-
tation can partially compensate for the effects of
illuminant changes (Dyer & Chittka, 2004; Ives,
1912).

Natural illumination spectra of forest shade, small
gap, and woodland shade are taken from Endler
(1993; Figure 3). These spectra provide a range of the

Figure 2. Bee color choice behavior in an agent-based modeling

environment based on flower constancy foraging strategy. The

bee agent begins with searching for flowers in a ‘‘patch’’ that is
in the vicinity of the bee (flowers within its visual field). Bee

agent will switch from move-and-search state until flowers are

found that will result in the bee movements on the grid. The

bee makes a decision if it should or should not forage on the

flower based on the other flowers that are available in the

patch of flowers. These flowers in the patch are then compared

with the memory of the most rewarding flower color, and bees

stay with this flower or switch to a different one depending on

the perceived similarity between the memorized and the

actually encountered flower color.
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natural illuminants that a foraging bee might
realistically encounter during a single foraging bout.
Forest shade is the condition under a closed canopy
cover, with most light transmitted through (or
reflected from) green foliage. Woodland shade is an
illumination condition found where trees do not form
a closed canopy and therefore gaps of open sky (of
varied sizes) generate a mixture of light with that
reflected from and transmitted through green leaves.
Gaps (‘‘sun flecks’’) are defined as patches of direct
sunlight within an otherwise forested environment
(Endler, 1993). Since the illumination spectra in
Endler (1993) extend only down to 400 nm, but bees
are sensitive in the UV down to 300 nm (Briscoe &
Chittka, 2001), we extrapolated down to 300 nm
from 400 nm using a polynomial trend of the
illumination spectra. Reflectance spectra of flowers
are downloaded from the FReD (Arnold et al.,
2010).

The conversion of photoreceptor quantum catch P
into receptor excitation E (normalized to a maximum
of unity) follows a nonlinear function (Chittka, Beier,
Hertel, Steinmann, & Menzel, 1992; Naka & Rush-
ton, 1966):

E ¼ P

Pþ 1
ð3Þ

Calculation of color loci in color space: Color
discrimination

To calculate the discriminability of flower colors in
color space, we used the color hexagon. Bee color
discrimination can be well explained by assuming that
receptor signals are processed using a two-dimensional
(2-D) color opponent space, although behavioral
(Chittka et al., 1992) as well as physiological (Yang,
Lin, & Hung, 2004) evidence is ambiguous as to the
precise nature of the opponent processes. For this
reason it is advisable to use a generalized representation
of color opponency that does not hinge critically on a
particular set of color opponent mechanisms (Chittka
et al., 1992). It can be shown by simple geometry that a
projection of the cubical receptor excitation space onto
two dimensions, which yields a hexagon, provides the
desired representation of color opponency. Points
within this hexagonal color space are defined by
constant difference between receptor signals, which is
just the sort of algorithm performed by the color
opponent system in the bee’s brain.

The hexagon coordinates of any color are defined by
the receptor signals derived according to Equation 3,
inserted into the following equations (both of which
define color-opponent axes of the color hexagon):

x ¼ cos 308 · ðEG � EUÞ ð4Þ

Figure 3. Normalized irradiance functions of the types of illumination used. Spectral distribution of daylight D65 (Wyszecki & Stiles,

1982), forest shade, woodland shade, and light filtered through small canopy gaps, all under sunny conditions (Endler, 1993),

normalized to a maximum of unity. The lights are differently intense in different wavelength domains—for example, forest shade light

is most intense around 550 nm, and so the light is green, whereas woodland shade is dominated by wavelengths in the 400–450 nm

range, and thus appears bluish. Adapted from figure 1 in Chittka (1996) with permission from Elsevier/Rightslink and data from

figures 6 through 8 in Endler (1993) with permission from Ecological Society of America.
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y ¼ EB � 0:5·ðEG þ EUÞ ð5Þ
Color distance in the color hexagon is determined

using a Euclidian metric, so that for two color stimuli
with coordinates x1, y1 and x2, y2, the color distance D
is:

D ¼ ðx1 � x2Þ2 þ ðy1 � y2Þ2
h i0:5

ð6Þ

Color discrimination between a trained (rewarding
color) and a different (unknown or less rewarding)
color does not follow a linear function. The probability
of selecting an encountered flower color, depending on

its similarity to the learnt flower color, is determined by
Pdiscrim (Chittka et al., 2001; Figure 5).

Retinex color constancy algorithms

Beyond simple calibration by receptor adaptation,
performance was measured in two computational
color constancy techniques, White patch–Brightest
patch (Land & McCann, 1971) and Gray world
assumption (Buchsbaum, 1980; Helson, 1964; Land,
1986). To apply a computational color constancy
method to the scene that the bee has encountered,
each time the bee attempts to make a decision
between flowers within its visual field, the scene is
transformed using a particular computational color
constancy function. The scene described is a segment
of the simulated meadow made up of cells from a
location within the visual field of the bee agent as it
forages. Each cell has a reflectance spectrum that is
either a floral color or green foliage illuminated by
the training or testing illuminants (Figure 6). This 2-
D scene made up of flower colors and green foliage is
processed through either the White patch retinex or
the Gray world method each time the bee agent
encounters flowers around its current position.

Figure 4. Color loci of 1,572 flower colors in the color hexagon,

and color shift under an illumination change. In this color space,

angular position (as measured from the center, the uncolored

point) corresponds to bee-subjective hue, so that color loci in

the top corner indicate bee blue; top right corner: bee blue-

green; bottom right corner: bee green, and so forth. The

distance between two color loci corresponds to their discrim-

inability. Large color shifts might corrupt the identification of

flower species by color. The distance from the center to any of

the corners is 1, and circles indicate distances from the center

at steps of 0.1. Straight lines represent color shift from daylight

D65 (dot end; Wyszecki & Stiles, 1982) to forest shade lighting

(tip end; Endler, 1993) for each flower plotted, assuming von

Kries receptor adaptation and no further correction. The line

from the dot to tip represents the perceptual color shift of

flowers under D65 daylight to forest shade lighting. Note that

shifts in different areas of color space occur predominantly in

different directions. Shifts appear especially pronounced in the

blue-green and UV-green areas of color space, and less so in the

green and UV-blue regions.

Figure 5. Flower constancy as a function of color distance

between natural flower colors as experimentally determined

under field conditions for several bee species (Chittka et al.,

2001). The curve is a cumulative Weibull distribution (k¼ 2.2, k

¼ 0.23) generated in Mathematica� (a statistical modeling tool)

in order to generate random numbers (i.e., color discrimination

level) given this distribution. This discrimination ability is Pdiscrim

as employed by the bee agent in Figure 2. The probability

determines if the bee will switch to another flower color or

continue to remain faithful to it, based on the color distance

(i.e., color units on the color hexagon) between the two

flowers.

Journal of Vision (2013) 13(10):10, 1–14 Faruq, McOwan, & Chittka 6



Figure 6. The efficiency of different color constancy algorithms in compensating for illumination shifts. The figure shows an example of

a scene (i.e., visual field, defined here as 14 · 14 celled map around the bee) consisting of five different flower colors encountered by

a bee agent in the simulation, remapped onto human vision in RGB. The excitation values of the bees’ UV, B, and G receptors range

from 0–1, and are mapped to red, blue, and green, respectively, ranging from 0–255. Colored squares represent flowers, and gray

squares green foliage. The scene is the visual field around the location of the bee, and consists of all flowers in r, the radius of the

visual field. It contains five flower species under daylight (left column) and forest shade (right column). The change of appearance is

shown for (a) von Kries adaptation only; (b) White patch algorithm; (c) Gray world algorithm. For this scene and this set of five flower

species, the White patch algorithm (b, middle row) performs best, since the colors are well spread out within scenes and also change

the least between scenes.

Journal of Vision (2013) 13(10):10, 1–14 Faruq, McOwan, & Chittka 7



A visual representation, accessible to human ob-
servers, of what happens to the transformation of the
bee agents’ scene when applying these computational
methods is presented in Figure 6. One example scene
shows how the 14 · 14 celled map around a bee agents’
location, consisting of random distribution of five floral
species, is transformed with the respective color
constancy mechanisms. The excitation response levels
of the bees’ UV, blue, and green photoreceptors
ranging from 0 and 1 are mapped to the human
trichromatic RGB values that range from 0–255 in
digital images (Gonzalez & Wintz, 1977) where bees’
short wavelength (UV) receptor response is mapped to
the shortwave component of the RGB model (B), the
bees’ middle wavelength (B) receptor is mapped to the
middle wavelength component of RGB (G), and the
bees’ long wavelength receptor response maps to the R
component of the RGB model.

White patch color constancy algorithm

A form of the White Patch retinex algorithm is
achieved through assuming that the brightest point in
a scene is of white color, so that all other colors can
be placed in the context of this reference (Land,
1964). In digital image processing it is achieved by
finding the brightest (highest excitation response at a
given location in the image—i.e., the brightest pixel)
level of pixels and to assume this is white (Ebner,
2007). Computationally, the White patch is the
maximum intensity in the UV, B, and G receptors,
and thus that is the estimated illuminant. The scene
undergoes a transformation using the estimated
illumination as a chromatic adaptation. Initially, the
simplest computational version of this is to find the
maximal intensity in each receptor response (Ebner,
2007):

Li;max ¼ max
x;y ciðx; yÞf g ð7Þ

In the above scenario, ci represents the response of
the receptors in a given location of x,y coordinates in a
given receptor (i.e., UV, B, or G). The maximum
intensity of Li,max is described as the maximum receptor
response of the reflected light ci, which is determined by
the canonical illuminant (L) and the object reflectance
(R) at point i in the scene:

ciðx; yÞ ¼ Riðx; yÞLi ð8Þ
This maximum value in each channel is used to

predict the illuminant, which is used to scale all the
perceived reflectance of all cells in the scene:

ciðx; yÞ
Li;max

:¼ Riðx; yÞ ð9Þ

An example of the efficiency of the White patch
algorithm in calibrating a visual scene is shown in
Figure 6b.

Gray world color constancy algorithm

The Gray world algorithm (Buchsbaum, 1980)
assumes that, on average, the color of the scene is
achromatic and so to estimate the illuminant, the
average color in the scene is used (Ebner, 2007;
Gonzalez & Wintz, 1977). The average of UV, B, and
G is found for a scene. In the first step, the average
color in the viewed image/scene is computed:

ai ¼ mean ciðx; yÞf g ð10Þ
If in all receptor responses ai (i.e., i¼UV, B, or G)

is equal, then the visual scene already satisfies the
Gray world assumption. If the average found of one
receptor type response is much lower than the other
receptor types then the algorithm increases the
influence of the lowest receptor type average excita-
tion response (Ebner, 2007). The same process as the
transformation in Equation 5 is applied except that
the white (maximum intensity) constants will be the
average value for the receptor response in UV, B,
and G. The mapping of the UBG response to RGB
system is shown in Figure 6c for the Gray world
assumption.

Reference points: Bee with perfect color constancy, no
color constancy, and color-blind bee

To test the computational models against a lower
and upper limit of the agent-based model bee, three
extreme models of vision were used to evaluate the
performance of the color constancy methods with
reference to these extremes: a color-blind bee, a bee
with no color constancy, and a bee with perfect
color constancy. A color-blind bee forages from all
five flower species indiscriminately, as if they were
members of the same species. Thus it can make
adaptive spatial foraging movements, but it cannot
choose the most rewarding species by color. A
‘‘perfect color-constancy bee’’ makes no mistakes
induced by changes in illumination; it experiences
no perceptual color shift while it still makes the
usual color discrimination errors based on its
ability to discriminate colors, i.e., similar colors are
confused with a certain probability, but this
remains independent of illumination changes
(Chittka et al., 2001). Finally, a no color-constancy
bee is simulated by using the constant value of R
in Equation 2 for a D65 daylight illuminant while
the illuminant is varied (Dyer, 1998, 1999; Dyer &
Chittka, 2004).

Journal of Vision (2013) 13(10):10, 1–14 Faruq, McOwan, & Chittka 8



Results

The spread of floral color loci in color space, as
well as their dislocation under changing illumination
conditions, depends strongly on the color constancy
algorithm that is implemented. To illustrate the
nature of the color shift for the various conditions
tested here, Figure 7 shows the color loci in bee color
space assuming either no calibration, von Kries
photoreceptor adaptation, or White patch and Gray
world assumption for one example set of five natural
flower colors. Without any mechanisms of color
correction (top row), illumination changes result in
large displacement of color loci, to such an extent
that the area generated by the loci of one flower
species under various illuminants can overlap with
that of another flower species (see loci on the bottom
right of the top panels). Such overlap indicates that
one flower species may be taken for another under
after an illumination change, an undesirable scenario
for a color vision system. The spread of color loci is
appreciably smaller when one assumes a correction
by a von Kries adaptation mechanism (second row).
Both the White patch and Gray world algorithms
provide a combination of relatively small color shift
under various illumination conditions, as well as a
good spread of color loci between the different flower
species.

Beyond this single example of one set of five flower
species, we analyzed quantitatively the quality of the
same color correction mechanisms for a larger
sample of such sets, in order to ensure that results
are robust and do not hinge critically on just one set
of flower colors. Figure 8 shows the average nectar
collection for a variety of color vision and color
constancy systems under changes of illumination
from standard daylight function D65 to three other
illuminants. The figure allows a comparison between
the performance of the various computational color
constancy methods tested here for 100 sets of five
randomly selected flower species viewed under
realistic illumination changes. It is noteworthy that
even a color-blind bee, which collects nectar from
five flower species without discrimination as if they
were members of the same species, collects a
reasonable amount of nectar (M ¼ 171.3, SE ¼ 1.1),
i.e., only 17% less than a bee with perfect color
constancy (M ¼ 206.5 6 3.1). This is because all
flower species in our simulation contain some nectar,
although there are of course pronounced differences
in their quality (Raine & Chittka, 2007a). We use
these two hypothetical systems (color-blind bee and a
bee with perfect color constancy) as benchmarks,
with the latter having a 100% improvement over the
former.

A bee equipped with trichromatic color vision but
no color constancy (M ¼ 178.8 6 1.5 ll) performed
only ;20% better than a color-blind bee (relative to
a maximum improvement at 100% for perfect color
constancy), and although this improvement is sig-
nificant at the 5% level, the qualitative change is
moderate. This demonstrates that without a suitable
correction mechanism in conditions of changing
illumination, color vision is only of limited value. A
simple von Kries photoreceptor adaptation mecha-
nism resulted in a further improvement of 15% in
nectar collection (M ¼ 184.0 6 3.0 ll). The most
powerful recovery of reflectance in the face of
changing illumination was generated by a combina-
tion of von Kries photoreceptor adaptation and a
White Patch calibration (;30% improvement relative
to a bee without color constancy; M ¼ 190.6 6 2.5ll)
closely followed by the Gray world (M ¼ 190.0 6 2.5
ll) condition. While these two mechanisms did not
convert into significantly different nectar collection
performances (Figure 8), they substantially (and for
most comparisons, significantly) outperformed the
color blind bee, the color vision system without color
correction, as well the bee equipped with only von
Kries receptor adaptation. This shows that there is
substantial adaptive value to color constancy under
biologically realistic conditions, However, it is also
remarkable that none of the correction mechanisms
employed here resulted in performance anywhere
near perfect color constancy, which is still ;45%
better than the best color constancy algorithm that
we tested (p , 0.001 for all models compared with
perfect color constancy).

Figure 7 shows that the quality of different color
constancy algorithms hinges both on minimizing
color shifts in conditions of changing illumination,
and also on the spread of color loci that correspond
to different objects (flowers in this case). To
disentangle these two factors, and to ensure that the
superior performance of the White patch and Gray
world algorithms was based in minimizing color shift,
we re-evaluated the bee agents’ performance for only
a limited range of color distances by taking into
account only pairs of flower colors within a narrow
range of color distances. Only nectar collected in
meadows with five randomly chosen flower species
that have an average perceptual color distance of
0.1–0.2 hexagon units amongst each other are shown
to ensure that color constancy performance is based
on perceptual color shift and not perceptual color
distance. Under such conditions, the White patch
algorithm (with a nectar harvest of M ¼ 191.5, SE ¼
2.7) still significantly outperforms a bee with no color
constancy (M ¼ 172.4, SE ¼ 1.2; Dunn’s multiple
comparisons test; p , 0.001) as well as a bee
equipped with only von Kries receptor adaptation
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Figure 7. Color loci in bee color space and compensation of color shift for four illumination conditions, assuming different color

constancy algorithms. The Figure displays color loci for one set of five flower species as an example, i.e., Vicia cracca (clear circle),

Lythrum salicaria (cross), Lathyrus pratensis (clear square), Cirsium oleraceum (filled square), and Lotus corniculatus (filled circle). Color

�
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(M ¼ 178.1, SE ¼ 1.7; p , 0.001), showing that this
particular algorithm’s superiority is not just based on
color discrimination (via maximizing color distances),
but on minimizing color shift under changing
illumination conditions.

Discussion

Our model demonstrates the biological usefulness of
various computational color constancy methods, as
well as receptor adaptation response mechanisms in
resolving color ambiguity under changes of illumina-
tion where the bee uses its color vision to perform a
color choice task to solve a real world problem it faces.
The results also highlight the importance of target
surround and scene content for bees to achieve color
constancy (Lotto & Wicklein, 2005; Werner et al.,
1988). A variety of computational color constancy
mechanisms use whole-scene analysis to estimate the
illuminant, or to use statistical ensemble to estimate the
surface reflectance (Linnell & Foster, 2002; Smithson &

Zaidi, 2004). Computational color constancy mecha-
nisms have not before been assessed based on the
biological significance of the subject correctly making
color choices under biologically realistic conditions.
Assuming certain computational color constancy
mechanisms, our simulations show quantitatively the
amount of reward collected under changes of illumi-
nation to explore how well the actual color visual
model performs. Since our results were determined
using a large variety of natural object color combina-
tions (rather than only a few selected scenes), and a
variety of illumination spectra, our results are likely
robust and not dependent on a particular set of colors.
This study shows that computational color constancy
mechanisms that make the use of scene statistics
achieve color constancy with substantially improved
results compared to a von Kries receptor adaptation
response mechanism alone. Our study quantifies the
biological significance of color constancy for foraging
bees, compared to no color constancy, or no color
vision at all.

Overall, the advantages generated by various color
vision systems, compared to an hypothetical color blind

Figure 8. Average (6 SE) nectar collected by a bee agent under changes of illumination from D65 daylight to forest shade, small gap

light or woodland shade, where each change in illumination from D65 daylight is simulated 100 times in meadows of five randomly

selected flower by new bee agents. Perfect color constancy is assigned 100% color constancy improvement over a color-blind bee.

Percentage in the other color visual systems indicates the increased nectar collection performance for each color constancy method

from the color-blind agent. These percentages are shown above the columns. Significance levels (Dunn’s Multiple Comparisons Test):

*p , 0.05; **p , 0.01; ***p , 0.001.

 
loci are shown for four natural lighting conditions (Endler, 1993)—D: norm function D65 (daylight); FS: forest shade; WS: woodland

shade; SG: small forest gaps. Concentric circles are at distances of 0.1 hexagon units. Insets (left) show extended views of the

rectangles within the color hexagons on the right, to allow for more detailed visual inspection of color loci and their shifts.
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bee are surprisingly moderate, in that even a system
with perfect color constancy would perform only ;17%
better than one with no color vision at all. However,
empirical results show, and our models confirm, that
bee color constancy is not perfect (Dyer & Chittka,
2004; Neumeyer, 1981b; Werner et al., 1988), and so
the advantages predicted by realistic color constancy
algorithms are only about half those of a hypothetical
perfect color constancy system (Figure 8).

Flower colors and bee color vision make an
exceptionally useful model to study color constancy,
because for pollinating insects more than for most
animals, accurate color choices need to be made
throughout its daily foraging activities. This is because
forager bees collect practically all the nutrition needed
for their native nest from flowers, and unlike other
animals, spend no time on other activities such as mate
search (Heinrich, 1979). Thus the quantitative benefits
of various components of color vision (including
constancy) are likely to be more pronounced in bees
than in most other animals. In this view, the advantages
gained by color constancy, as measured in our study,
are likely to be at the upper end of those found across
animal species. This is all the more so since the random
distributions of flowers in space used here will
necessitate frequent decisions between flower species—
real plants are often aggregated in space, and pollina-
tors therefore do not have to make accurate color
choices as frequently as in a random distribution of
multiple flower species. Thus, the differences in the
quality of various color vision and color constancy
algorithms are likely to be even smaller in natural
conditions than in our modeling. Nonetheless even a
few percent of improvement in foraging performance,
mediated by a particular mechanism of color correction
under changes of illumination, might still provide a
fitness advantage over the duration of an entire
foraging career.

Agent based modeling is especially useful to explore
the quantitative benefits of sensory and cognitive
mechanisms under biologically realistic conditions
(Dornhaus et al., 2006). An alternative is to measure
the quantitative benefits of various algorithms mathe-
matically—for example, simply measuring the amount
of color shift in conditions of changing illumination
depending on the nature of the calibration mechanism.
This might produce a rank order of the quality of
various color constancy corrections similar to the one
obtained here, but it would not allow us to measure
quantitatively the benefits of such algorithms based on
realistic distributions of flower colors in space, associ-
ated with real rewards in terms of nectar quality, and
using bees’ empirically determined foraging rules. Our
approach therefore allows a much more accurate
assessment of the advantages of color constancy in the
economy of nature.

Keywords: Gray world algorithm, insect vision,
receptor adaptation, White patch algorithm

Acknowledgments

Samia Faruq was supported by a PhD studentship
from the EPSRC (Engineering and Physical Research
Council), UK.

Commercial relationships: none.
Corresponding author: Lars Chittka.
Email: l.chittka@qmul.ac.uk.
Address: School of Biological and Chemical Sciences,
Queen Mary University of London, London, United
Kingdom.

References

Arnold, S. E. J., Faruq, S., Savolainen, V., McOwan, P.
W., & Chittka, L. (2010). FReD: The Floral
Reflectance Database—A web portal for analyses
of flower color. PloS ONE, 5(12), e14287, doi:10.
1371/journal.pone.0014287.

Brainard, D. H., Kraft, J. M., & Longère, P. (2003).
Colour constancy: Developing empirical tests of
computational models. In R. Mausfeld & D. Heyer
(Eds.), Colour perception: Mind and the physical
world (pp. 307–328). Oxford, UK: Oxford Univer-
sity Press.

Brainard, D. H., Longere, P., Delahunt, P. B.,
Freeman, W. T., Kraft, J. M., & Xiao, B. (2006).
Bayesian model of human color constancy. Journal
of Vision, 6(11):10, 1267–1281, http://www.
journalofvision.org/content/6/11/10, doi:10.1167/6.
11.10. [PubMed] [Article]

Brainard, D. H., & Wandell, B. A. (1986). Analysis of
the retinex theory of color vision. Journal of the
Optical Society of America A, 3, 1651–1661.

Briscoe, A., & Chittka, L. (2001). The evolution of
colour vision in insects. Annual Review of Ento-
mology, 46, 471–510.

Buchsbaum, G. (1980). A spatial processor model for
object colour perception. Journal of the Franklin
Institute, 310, 1–26.

Chittka, L. (1996). Optimal sets of colour receptors and
opponent processes for coding of natural objects in
insect vision. Journal of Theoretical Biology, 181,
179–196.

Chittka, L., Beier, W., Hertel, H., Steinmann, E., &
Menzel, R. (1992). Opponent color coding is a

Journal of Vision (2013) 13(10):10, 1–14 Faruq, McOwan, & Chittka 12

http://www.journalofvision.org/content/6/11/10
http://www.journalofvision.org/content/6/11/10
http://www.ncbi.nlm.nih.gov/pubmed/17209734
http://www.journalofvision.org/content/6/11/10.long


universal strategy to evaluate the photoreceptor
inputs in hymentoptera. Journal of Comparative
Physiology A, 170, 545–563.

Chittka, L., Gumbert, A., & Kunze, J. (1997). Foraging
dynamics of bumble bees: Correlates of movements
within and between plant species. Behavioral
Ecology, 8, 239–249.

Chittka, L., & Menzel, R. (1992). The evolutionary
adaptation of flower colours and the insect
pollinators’ colour vision. Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, &
Behavioral Physiology, 171, 171–181.

Chittka, L., Shmida, A., Troje, N., & Menzel, R.
(1994). Ultraviolet as a component of flower
reflections, and the colour perception of Hyme-
noptera. Vision Research, 34, 1489–1508.

Chittka, L., Spaethe, J., Schmidt, A., & Hickelsberger,
A. (2001). Adaptation, constraint, and chance in
the evolution of flower color and pollinator color
vision. In L. Chittka & J. D. Thomson (Eds.),
Cognitive ecology of pollination (pp. 106–126).
Cambridge: Cambridge University Press.

Chittka, L., & Thomson, J. D. (1997). Sensori-motor
learning and its relevance for task specialization in
bumble bees. Behavioral Ecology & Sociobiology,
41, 385–398.
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